221 research outputs found

    Comment on ``Fragmented Condensate Ground State of Trapped Weakly Interacting Bosons in Two Dimensions"

    Full text link
    Recently Liu et al. [PRL 87, 030404 (2001)] examined the lowest state of a weakly-interacting Bose-Einstein condensate. In addition to other interesting results, using the method of the pair correlation function, they questioned the validity of the mean-field picture of the formation of vortices and stated that the vortices are generated at the center of the cloud. This is in apparent contradiction to the Gross-Pitaevskii approach, which predicts that the vortices successively enter the cloud from its outer parts as L/N (where N is the number of atoms in the trap and hbar(L) is the angular momentum of the system) increases. We have managed to reproduce the results of Liu et al. however a more careful analysis presented below confirms the validity of the mean-field approach.Comment: 1 page, RevTex, 2 figure

    Vortices in Bose-Einstein condensates - finite-size effects and the thermodynamic limit

    Full text link
    For a weakly-interacting Bose gas rotating in a harmonic trap we relate the yrast states of small systems (that can be treated exactly) to the thermodynamic limit (derived within the mean-field approximation). For a few dozens of atoms, the yrast line shows distinct quasi-periodic oscillations with increasing angular momentum that originate from the internal structure of the exact many-body states. These finite-size effects disappear in the thermodynamic limit, where the Gross-Pitaevskii approximation provides the exact energy to leading order in the number of particles N. However, the exact yrast states reveal significant structure not captured by the mean-field approximation: Even in the limit of large N, the corresponding mean-field solution accounts for only a fraction of the total weight of the exact quantum state.Comment: Phys Rev A, in pres

    Difference between stable and exotic nuclei: medium polarization effects

    Full text link
    The bare NN-potential, parametrized so as to reproduce the nuclear phase shifts leads to a sizable Cooper pair binding energy in nuclei along the stability valley. It is a much debated matter whether this value accounts for the "empirical" value of the pairing gap or whether a similarly important contribution arises from the exchange of collective vibrations between Cooper pair partners. In keeping with the fact that two-particle transfer reactions are the specific probe of pairing in nuclei, and that exotic halo nuclei like 11Li are extremely polarizable, we find that the recent studied reaction, namely 11Li+p -> 9Li+t, provides direct evidence of phonon mediated pairing in nuclei

    Low-lying excitations of a trapped rotating Bose-Einstein condensate

    Full text link
    We investigate the low-lying excitations of a weakly-interacting, harmonically-trapped Bose-Einstein condensed gas under rotation, in the limit where the angular mometum LL of the system is much less than the number of the atoms NN in the trap. We show that in the asymptotic limit N→∞N \to \infty the excitation energy, measured from the energy of the lowest state, is given by 27N3(N3−1)v0/6827 N_{3}(N_{3}-1) v_0 /68, where N3N_{3} is the number of octupole excitations and v0v_{0} is the unit of the interaction energy.Comment: 3 pages, RevTex, 2 ps figures, submitted to PR

    Fluctuation properties of strength function associated with the giant quadrupole resonance in 208Pb

    Get PDF
    We performed fluctuation analysis by means of the local scaling dimension for the strength function of the isoscalar (IS) giant quadrupole resonance (GQR) in 208Pb where the strength function is obtained by the shell model calculation including 1p1h and 2p2h configurations. It is found that at almost all energy scales, fluctuation of the strength function obeys the Gaussian orthogonal ensemble (GOE) random matrix theory limit. This is contrasted with the results for the GQR in 40Ca, where at the intermediate energy scale about 1.7 MeV a deviation from the GOE limit was detected. It is found that the physical origin for this different behavior of the local scaling dimension is ascribed to the difference in the properties of the damping process.Comment: 10 pages, 14 figures, submitted to Physical Review

    Nilsson diagrams for light neutron-rich nuclei with weakly-bound neutrons

    Full text link
    Using Woods-Saxon potentials and the eigenphase formalism for one-particle resonances, one-particle bound and resonant levels for neutrons as a function of quadrupole deformation are presented, which are supposed to be useful for the interpretation of spectroscopic properties of some light neutron-rich nuclei with weakly-bound neutrons. Compared with Nilsson diagrams in text books which are constructed using modified oscillator potentials, we point out a systematic change of the shell structure in connection with both weakly-bound and resonant one-particle levels related to small orbital angular momenta ℓ\ell. Then, it is seen that weakly-bound neutrons in nuclei such as 15−19^{15-19}C and 33−37^{33-37}Mg may prefer to being deformed as a result of Jahn-Teller effect, due to the near degeneracy of the 1d5/2_{5/2}-2s1/2_{1/2} levels and the 1f7/2_{7/2}-2p3/2_{3/2} levels in the spherical potential, respectively. Furthermore, the absence of some one-particle resonant levels compared with the Nilsson diagrams in text books is illustrated.Comment: 12 pages, 5 figure

    Rotating Bose-Einstein condensates: Closing the gap between exact and mean-field solutions

    Full text link
    When a Bose-Einstein condensed cloud of atoms is given some angular momentum, it forms vortices arranged in structures with a discrete rotational symmetry. For these vortex states, the Hilbert space of the exact solution separates into a "primary" space related to the mean-field Gross-Pitaevskii solution and a "complementary" space including the corrections beyond mean-field. Considering a weakly-interacting Bose-Einstein condensate of harmonically-trapped atoms, we demonstrate how this separation can be used to close the conceptual gap between exact solutions for systems with only a few atoms and the thermodynamic limit for which the mean-field is the correct leading-order approximation. Although we illustrate this approach for the case of weak interactions, it is expected to be more generally valid.Comment: 8 pages, 5 figure

    Seniority conservation and seniority violation in the g_{9/2} shell

    Full text link
    The g_{9/2} shell of identical particles is the first one for which one can have seniority-mixing effects. We consider three interactions: a delta interaction that conserves seniority, a quadrupole-quadrupole (QQ) interaction that does not, and a third one consisting of two-body matrix elements taken from experiment (98Cd) that also leads to some seniority mixing. We deal with proton holes relative to a Z=50,N=50 core. One surprising result is that, for a four-particle system with total angular momentum I=4, there is one state with seniority v=4 that is an eigenstate of any two-body interaction--seniority conserving or not. The other two states are mixtures of v=2 and v=4 for the seniority-mixing interactions. The same thing holds true for I=6. Another point of interest is that the splittings E(I_{max})-E(I_{min}) are the same for three and five particles with a seniority conserving interaction (a well known result), but are equal and opposite for a QQ interaction. We also fit the spectra with a combination of the delta and QQ interactions. The Z=40,N=40 core plus g_{9/2} neutrons (Zr isotopes) is also considered, although it is recognized that the core is deformed.Comment: 19 pages, 9 figures; RevTeX4. We have corrected the SDI values in Table1 and Fig.1; in Sect.VII we have included an explanation of Fig.3 through triaxiality; we have added comments of Figs.10-12 in Sect.IX; we have removed Figs.7-
    • …
    corecore